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Abstract—The finite-element method (FEM) exhibits a re-
duced convergence rate when used for the analysis of geometries
containing sharp edges where the electromagnetic field is sin-
gular. The convergence of the method can be improved by
introducing singular elements that model analytically predicted
singular behavior. A number of authors have developed singular
elements that are compatible with the scalar FEM. In this
paper, we propose a new singular element that is compatible
with edge-based vector finite elements and can cope with any
order of singularity while preserving the sparsity of the FEM
equations. Edge-based singular elements more correctly model
singular fields and thus require fewer unknowns, while avoiding
the introduction of spurious modes in the numerical solution.
Numerical results verify that the convergence of the FEM is
significantly improved.

Index Terms—Finite elements, munerical analysis.

I. INTRODUCTION

T HE FINITE-ELEMENT method (FEM), based on vector
or edge elements, is a powerful numerical technique for

solving a variety of waveguide and cavity problems. It is
capable of handling isotropic or anisotropic inhomogeneous
media, and it suppresses nonphysical spurious modes from the
numerical solution. However, many of these structures contain
conducting or dielectric edges, and the field behavior can be
singular in the vicinity of these edges [1], [2]. If traditional
polynomial edge elements are used to model these rapidly
varying fields, it becomes necessary to use a fine mesh in the
vicinity of the edge [3], [4]. This is despite the observation
that ordinary edge elements are better suited than scalar
expansions for coping with the singular field behavior, since
the normal field component is allowed to be discontinuous
at a sharp edge [5], [6]. The additional unknowns in the
mesh increase the computational time as well as memory
requirements [7]. One proposed remedy is to augment the
trial functions with appropriate singular functions associated
with a nodeless (unknown) variable [8], [9] which leads to
an increase of the bandwidth of the global FEM matrix. The
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Fig. 1. Conducting edge embedded in a dielectric region.

most efficient approach is the use of singular elements. In
this case, the trial functions that are nonzero at the singular
node are replaced with functions that properly model singular
field behavior. Singular scalar elements have been used in
various FEM formulations resulting in faster convergence of
the numerical solution [10]–[12].

In this paper, a new edge-based singular vector element
similar to [13] is proposed. This singular vector element is
compatible with the triangular-cell linear-tangential/quadratic-
normal (LT/QN) edge element [14], and can cope with any or-
der of singularity. Trial functions are expressed in a triangular
polar coordinate system [15] and all the necessary integrations
are performed analytically. The sparsity of the FEM equations
is preserved, and spurious modes are eliminated. The number
of unknown parameters needed to model the fields is signifi-
cantly reduced by employing singular elements, as shown by
numerical data. Results also suggest that for the same number
of unknowns, the field distribution produced by the singular
elements is much smoother in the vicinity of the singular point.

II. BASIS-FUNCTION DEFINITION

Our goal is to construct a vector trial function that can accu-
rately model singular behavior near a sharp edge (Fig. 1) and at
the same time be compatible with an ordinary curl-conforming
element, i.e., require continuous tangential components and
allow for discontinuous normal components along the element
edges. Furthermore, the singular basis functions must not
interfere with the interpolatory nature of the conventional
LT/QN functions. The field in the vicinity of an edge behaves
as [1], [2]

(1a)

(1b)
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Fig. 2. Singular element with a triangular coordinate system.

where is the local polar coordinate system with the
origin at the edge, as shown in Fig. 1. (We will use the
magnetic field for illustration; the electric field can be modeled
in a similar manner near an edge.) The singularity coefficient

depends on the geometry and material properties [16].
Actually, only the transverse component is singular whereas
the longitudinal component has a singular derivative.

To enhance the efficiency of the FEM, special singular
elements can be created around an edge, replacing the ordinary
cells of the FEM mesh. Fig. 2 depicts a singular element with
local numbering of vertices denoted by 1, 2, and 3, with node 1
being the singular point on the edge. For convenience, we
introduce a triangular polar coordinate system that is
related to the coordinates by [15]

(2a)

(2b)

Hence, the -field component can be expressed as

(3)

In order to model this behavior, the -field within a singular
element is expanded in terms of nodal-based coefficients
and singular scalar basis functions , according to

(4)

where

(5)

and where the parameter represents the order of singularity
approximation in the radial direction. The distribution of nodes
and the double indexing relationship is shown in Fig. 3
for a second-order singular element.

The angular shape functions are the usual Lagrange
polynomials

(6)

The radial shape functions represent the singular
behavior in the radial direction

(7a)

Fig. 3. Single and double node numbering for scalarB
M

mn
basis functions

in a second-order element.

and satisfy the conditions that is zero at all nodes,
except at the nodes where :

(7b)

For example,

(8a)

(8b)

(8c)

Note that the scalar singular functions are the same as
those used in [12].

The transverse field is expressed in terms of coefficients
and edge-based vector basis functionsas

(9)

where a few of the basis functions are singular and the rest
of them nonsingular. In cases when the geometry of the
waveguide or cavity cross section supports singular fields, the
singular basis functions provide the proper dependence; if the
actual fields are finite, the coefficients of the singular functions
can vanish, allowing the nonsingular part of (9) to prevail.

The nonsingular basis functions are chosen to be the same as
the ordinary LT/QN trial functions. The two LT/QN functions
interpolating to nonzero tangential fields at the singular node
are replaced by singular basis functions, which, according
to Van Bladel [17] should be predominantly quasi-static in
the vicinity of the edge. Hence, we construct each singular
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Fig. 4. Definition of vector basis functions in a second-order LT/QN edge
element.

function as the gradient of a linear combination of nodal-based
scalar functions (5) and a nonsingular part :

(10)

where the order of the singularity is equal to the polynomial
order of the tangential component in the neighboring edge
elements

(11)

and , , and are outward normals along edges
1–2, 2–3, and 3–1, respectively. The constants and the
nonsingular part in (10) are chosen in such way that the
basis function has a continuous tangential component along
the edge it is associated with, and zero tangential components
at the other two edges.

III. SINGULAR ELEMENT COMPATIBLE

WITH LT/QN EDGE ELEMENT

In [14], an LT/QN edge element was derived for triangular
cells based on the Nedelec conditions [18]. This element
consists of eight vector basis functions, six edge-based and
two face-based, as shown in Fig. 4. To generalize this type of
element to the singular case, we choose two of the edge-based
functions associated with singular node 1 (and ) to be
singular, and the other six nonsingular. The entire set of eight
functions can be expressed in the triangular polar coordinate
system in the following way:

(12a)

(12b)

Fig. 5. Edge-based singular vector basis function.

(12c)

(12d)

(12e)

(12f)

(12g)

(12h)

A plot of a singular basis function is shown in Fig. 5. (The
nonsingular functions are plotted in [14].) Cell-to-cell continu-
ity conditions are imposed so that the representation produces
continuous tangential components throughout the mesh, but
permits discontinuous normal components between cells in
common with the conventional LT/QN functions.

IV. A PPLICATION TO RESONANT CAVITY ANALYSIS

To illustrate relative accuracy, the LT/QN-compatible sin-
gular elements were used to estimate the wavenumbers

of the transverse vector Helmholtz equation

(13)

for several two-dimensional (2-D) cavity problems involving
homogeneous media with permittivity and permeability .
After applying the Galerkin procedure, a generalized matrix
eigenvalue equation is obtained. The required
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(a) (b)

Fig. 6. (a) The TE field associated with the lowest order electric mode. (b) The magnetic field associated with the lowest order TM mode.

(a) (b)

Fig. 7. An expanded view of the electric field in the immediate vicinity of the baffle tip. (a) Electric field obtained using singular elements in the cells
adjacent to the tip. (b) Electric field obtained using only nonsingular LT/QN functions throughout the mesh.

element matrices are

(14)

and

(15)

where is the area of the element. Since the basis functions
are given in the triangular coordinate system , all

integrations involve polynomial products and can be evaluated
analytically. This eigenvalue problem is solved iteratively,
taking advantage of the sparsity of the global FEM matrices
[19]. The above equations describe the TM modes of a 2-D
cavity; the TE modes can be obtained from (13) by exchanging

the magnetic field with the electric field and imposing the
essential boundary condition that the tangential electric field
vanishes on a perfect conductor.

Consider a homogeneous circular cavity of unit radius with
a baffle extending to the center (Fig. 6) for which the 2-D
modes and resonant frequencies can be found analytically.
Fig. 6(a) shows the electric field for the lowest order TE mode,
while Fig. 6(b) shows the magnetic field for the lowest order
TM mode. Both appear to exhibit a singularity at the baffle
tip. These results were obtained by representing the electric
field with ordinary LT/QN elements everywhere, except in
the cells adjacent to the tip of the baffle, where they were
replaced by the singular functions of (12). Fig. 7(a) shows an
expanded view of the TE field in the immediate vicinity of
the edge obtained using the singular functions, while Fig. 7(b)
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Fig. 8. Normalized surface current on the baffle of the circular cavity for a
coarse mesh with only two edges on the baffle. The result using an LT/QN
expansion is compared to that obtained with singular basis functions around
the tip of the baffle and to the exact solution.

Fig. 9. Error in the lowest order TM wavenumber versus average edge
length in the mesh for 18 unstructured triangular-cell meshes. This mode
has a singularity at the baffle tip, and results obtained using ordinary
LT/QN elements everywhere are compared with results from LT/QN elements
augmented with singular elements around the tip.

shows the identical view for the TE mode obtained using only
the nonsingular LT/QN elements. It is apparent from Fig. 7
that the singular elements produce a smoother less distorted
field plot in the vicinity of the singularity. Fig. 8 shows a
comparison of the exact and numerical results for the TM
surface current on the baffle for a coarse mesh with only
two edges along the baffle. The singular basis function closely
tracks the exact singularity. To illustrate convergence, Fig. 9
shows the error in the eigenvalue associated with the lowest
order TM mode versus average edge length in the mesh for
singular and nonsingular basis functions. Data were obtained
using 18 unstructured triangular-cell meshes; the finest mesh
produces about 22 000 unknowns. Fig. 10 shows similar data
for the next higher TM mode, which is nonsingular. Results

Fig. 10. Error in the second TM wavenumber versus average edge length
in the mesh for the same meshes used to produce Fig. 8. This mode is
nonsingular, but illustration results obtained using ordinary LT/QN elements
everywhere are compared with results from LT/QN elements augmented with
singular elements around the tip.

TABLE I
LOWEST TE WAVENUMBER FOR THE L-SHAPED CAVITY, PRODUCED BY VARIOUS

TRIANGULAR-CELL MESHESWITH AVERAGE EDGE LENGTH INDICATED.

THIS IS A SINGULAR MODE, AND RESULTS OBTAINED WITH SINGULAR

ELEMENTS AROUND THE CORNER ARE COMPARED WITH RESULTS OBTAINED

USING ONLY NONSINGULAR LT/QN ELEMENTS THROUGHOUT THE MESH

obtained using the singular basis functions show much steeper
convergence curves than the nonsingular basis functions for
the singular modes; for the nonsingular modes the error curves
are similar whether singular or nonsingular basis functions
are used. All computations were done in single precision, and
produced at least four significant digits after eigensolution.
The observed convergence behavior for TE modes is similar.

As a second example, consider an L-shaped cavity with
exterior dimensions 2 2, and the interior corner located at the
center. Fig. 11(a) shows a vector plot of the lowest order TE
mode, while Fig. 11(b) shows the lowest order TM mode. Both
are singular at the interior corner. Table I shows numerical
results for the lowest order TE eigenvalue as a function of
average edge length in the various finite-element meshes used
to represent the region. The results obtained using singular
functions at the corner appear to converge much faster than the
results obtained using ordinary LT/QN elements everywhere.
Similar convergence rates were observed for the lowest order
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(a) (b)

Fig. 11. (a) The electric field associated with the lowest order TE mode. (b) The magnetic field associated with the lowest order TM mode.

TABLE II
SECOND TE WAVENUMBER FOR THE L-SHAPED CAVITY, PRODUCED BY VARIOUS

TRIANGULAR-CELL MESHESWITH AVERAGE EDGE LENGTH INDICATED. THIS IS

A NONSINGULAR MODE, AND RESULTSOBTAINED WITH SINGULAR

ELEMENTS AROUND THE CORNER ARE COMPARED WITH RESULTS OBTAINED

USING ONLY NONSINGULAR LT/QN ELEMENTS THROUGHOUT THE MESH

TM mode. Table II shows numerical results obtained for the
next higher TE mode, which is finite at the corner. For
this nonsingular mode, the error produced using the singular
functions in the vicinity of the edge is not much different
from the error produced without the singular functions present,
although it is slightly greater for coarse meshes.

V. CONCLUSION

A new singular vector finite element compatible with LT/QN
edge-elements has been developed. It provides continuous
tangential and discontinuous normal components along the
element edges. Out of eight basis functions per triangle, six
edge-based and two face-based, two are chosen to be singular
in accordance with Van Bladel’s prescription [17]. The other
six functions are nonsingular and the same as ordinary LT/QN
elements.

Two types of homogeneous cavity structures have been
analyzed for illustration. For singular cavity modes, the sin-
gular elements provide improved convergence, and smoother
fields in the cells near the corner or edge. Consequently,
they offer improved accuracy with far fewer unknowns. For

nonsingular modes, the use of singular elements increases the
observed error only slightly, and does not appear to affect the
rate of convergence. Thus, the singular elements can be used
in locations where a field singularity is expected. If such a
singularity is absent, the results will not be adversely affected.
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