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Abstract—The finite-element method (FEM) exhibits a re- P(r6,2)
duced convergence rate when used for the analysis of geometries O
containing sharp edges where the electromagnetic field is sin-
gular. The convergence of the method can be improved by
introducing singular elements that model analytically predicted
singular behavior. A number of authors have developed singular
elements that are compatible with the scalar FEM. In this
paper, we propose a new singular element that is compatible
with edge-based vector finite elements and can cope with any
order of singularity while preserving the sparsity of the FEM
equations. Edge-based singular elements more correctly model Fig. 1. Conducting edge embedded in a dielectric region.

singular fields and thus require fewer unknowns, while avoiding

the introduction of spurious modes in the numerical solution.

Numerical results verify that the convergence of the FEM is most efficient approach is the use of singular elements. In

significantly improved. this case, the trial functions that are nonzero at the singular
Index Terms—Finite elements, munerical analysis. node are replaced with functions that properly model singular
field behavior. Singular scalar elements have been used in
various FEM formulations resulting in faster convergence of
. INTRODUCTION the numerical solution [10]-[12].
HE FINITE-ELEMENT method (FEM), based on vector In this paper, a new edge-based singular vector element
or edge elements, is a powerful numerical technique feimilar to [13] is proposed. This singular vector element is
solving a variety of waveguide and cavity problems. It isompatible with the triangular-cell linear-tangential/quadratic-
capable of handling isotropic or anisotropic inhomogeneonsrmal (LT/QN) edge element [14], and can cope with any or-
media, and it suppresses nonphysical spurious modes from diee of singularity. Trial functions are expressed in a triangular
numerical solution. However, many of these structures contginlar coordinate system [15] and all the necessary integrations
conducting or dielectric edges, and the field behavior can bee performed analytically. The sparsity of the FEM equations
singular in the vicinity of these edges [1], [2]. If traditionalis preserved, and spurious modes are eliminated. The number
polynomial edge elements are used to model these rapidfyunknown parameters needed to model the fields is signifi-
varying fields, it becomes necessary to use a fine mesh in ttamtly reduced by employing singular elements, as shown by
vicinity of the edge [3], [4]. This is despite the observatiomumerical data. Results also suggest that for the same number
that ordinary edge elements are better suited than scal&runknowns, the field distribution produced by the singular
expansions for coping with the singular field behavior, sinadements is much smoaother in the vicinity of the singular point.
the normal field component is allowed to be discontinuous
at a sharp edge [5], [6]. The additional unknowns in the II. BASIS-FUNCTION DEFINITION

mesh increase the computational time as well as memoryg,,r goal is to construct a vector trial function that can accu-
requirements [7]. One proposed remedy is to augment thgq|y model singular behavior near a sharp edge (Fig. 1) and at
trl_al functions with appropriate ;mgular funcuon; associatgfle same time be compatible with an ordinary curl-conforming
with a nodeless (unknown) variable [8], [9] which leads tQiement, j.e., require continuous tangential components and

an increase of the bandwidth of the global FEM matrix. Theyq,y for discontinuous normal components along the element

edges. Furthermore, the singular basis functions must not
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f in a second-order element.

Fig. 2. Singular element with a triangular coordinate system. . . " .
and satisfy the conditions thak,’(p) is zero at all nodes,

. . . except at the nodes wheie= m:
where (r, ¢, z) is the local polar coordinate system with the P mn

origin at the edge, as shown in Fig. 1. (We will use the RM (3 /M) =0, i=1,2-m—1m+1,--- M
magnetic field for illustration; the electric field can be modeled s

. - ) . . R (m/M) =1. (7b)
in a similar manner near an edge.) The singularity coefficient

v depends on the geometry and material properties [1§]or example

Actually, only the transverse component is singular whereas ’

the longitudinal component has a singular derivat.ive. . Ry(p)=1—p",Rp) = p” (8a)
To enhance the efficiency of the FEM, special singular 2(p) = 1 — (2" — 1)p¥ + (2V+! — 2)pr

elements can be created around an edge, replacing the ordinary g .

cells of the FEM mesh. Fig. 2 depicts a singular element with Ri(p) =2"""p"(1 = p)

local numbering of vertices denoted by 1, 2, and 3, with node 1 R3(p) = —p" (1 —2p) (8b)

being the singular point on the edge. For convenience, we 3 il v

introduce a triangular polar coordinate systémo) that is Rolp) =1~ <1 +3 ov )p

related to the(z,y) coordinates by [15] 5
x=x1 + ples —x1 +0(x3 — 2)] (2a) 2
y =1+ ply2 —y1 +0o(ys —y2)]. (2b) _ <9 Loz Lﬂ>pu+2
Hence, thel -field component can be expressed as 2
H. = fo+ 0" folo) + 0" fu(0) + 0" 2 fa(0) + . (3) Ri(p) = —5—p"(2 = 5p +3p%)

In order to model this behavior, thié_-field within a singular Ri(p) = 3_pu(3 — 120+ 9p%)
element is expanded in terms of nodal-based coefficidnts v
and singular scalar basis functiof8’ , according to R3(p) = %p”(2 — 90+ 9p%). (8c)

i

M m

H.=) "> AnBi(p,0) (4) Note that the scalar singular functiod), are the same as
m=0n=0 those used in [12].
where The transverse field; is expressed in terms of coefficients
¥, and edge-based vector basis functidiisas
B (p,0) = RY ()L (0) ©) g @

and where the paramet&f represents the order of singularity
approximation in the radial direction. The distribution of nodes
and the double indexing relationship:, ) is shown in Fig. 3
for a second-order singular element. where a few of the basis functions are singular and the rest

The angular shape functiodg* (o) are the usual Lagrangeof them nonsingular. In cases when the geometry of the
polynomials waveguide or cavity cross section supports singular fields, the
. singular basis functions provide the proper dependence; if the
Lre) =] me=J  ,—=0,1,-,m  (6) actualfields are finite, the coefficients of the singular functions
n=J can vanish, allowing the nonsingular part of (9) to prevail.

The nonsingular basis functions are chosen to be the same as

The radial shape function®2/(p) represent the singularthe ordinary LT/QN trial functions. The two LT/QN functions

N
H, = Z W;Bi(p,0) 9)
=1

m

F=0
J#n

behavior in the radial direction interpolating to nonzero tangential fields at the singular node
M ‘ are replaced by singular basis functions, which, according
R (p) = aip"tt (7a) to Van Bladel [17] should be predominantly quasi-static in

—

the vicinity of the edge. Hence, we construct each singular
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Fig. 4. Definition of vector basis functions in a second-order LT/QN edge i , : : : i :
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Bk = Bkns + Z ckrnnvtBr])lln(p7 0)

ooy Fig. 5. Edge-based singular vector basis function.

= Bkns + Z CkmnB%n(pv U) (10) Lo
mn Bg = VtB%l —+ B3ns — 223223 l/(py—l _ p)a
where the order of the singularifif is equal to the polynomial 1127‘112( 1 )1 )+ lglﬁgl( o1l )
order of the tangential component in the neighboring edge T oA, W TR TR W T Re
elements (12¢)
_ l
BM _v,pM By =— 22 lasnazpo (12d)
losTioz ORM liofi12(1 — o = . lognaz
st 2 l0) (o) - B2z =0) By = VBl + Byns = ZRZ0( = )1~ o)
aLm(O') lglﬁglo' aLm(O') 112ﬁ12 v—1 l3lﬁ31 v—1
M n M n — — — —
X By (p) =5 on, T ()=, o, W ame) = SR e
(11) (12e)
_ l
Bg = — IAQ lo3fizzp(l — o) (12f)
and n12, 7oz, and fniz; are outward normals along edges 24,

1-2, 2-3, and 3-1, respectively. The constanis, and the 5 _ ha2 p(1=p)(1—-0)— —lglﬁglp(l -po  (129)
nonsingular part;.,; in (10) are chosen in such way that the Z2Ae ,
basis functionB;, has a continuous tangential componentalong 5 _ ¢23723 » 31731
the edge it is associated with, and zero tangential componentsB8 O2A, proll—o)= Pl =p)o (12h)
at the other two edges.
A plot of a singular basis function is shown in Fig. 5. (The
nonsingular functions are plotted in [14].) Cell-to-cell continu-
[ll. SINGULAR ELEMENT COMPATIBLE ity conditions are imposed so that the representation produces

WITH LT/QN EDGE ELEMENT continuous tangential components throughout the mesh, but

In [14], an LT/QN edge element was derived for triangulaﬁ’ermits discontinuous normal components between cells in
cells based on the Nedelec conditions [18]. This elemefRMmon with the conventional LT/QN functions.
consists of eight vector basis functions, six edge-based and

two face-based, as shown in Fig. 4. To generalize this type of IV. APPLICATION TO RESONANT CAVITY ANALYSIS
elemgnt to the ;lngular_casg, we choose two of the edge-basepo illustrate relative accuracy, the LT/QN-compatible sin-
functions associated with singular node Bs(and B;) to be .

L{Iar elements were used to estimate the wavenumbets

ingular, and the other six nonsingular. The entir f ei .
singuiar, a d the other s onsinguta € entire set o ?gggg /e of the transverse vector Helmholtz equation
functions can be expressed in the triangular polar coordina

system in the following way: V. x (V, x H,) = k*H, (13)
B = _%ZIQﬁlw(l -0) (12a) for several two—dim_ensi_onal (2—!)) _cavity problems _ir_wolving

21 e homogeneous media with permittivity, and permeability.
By = —ilglﬁglpa (12b) After applying the Galerkin procedure, a generalized matrix

24, eigenvalue equatio®e = k2Fe is obtained. The required
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Fig. 6. (a) The TE field associated with the lowest order electric mode. (b) The magnetic field associated with the lowest order TM mode.
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Fig. 7. An expanded view of the electric field in the immediate vicinity of the baffle tip. (a) Electric field obtained using singular elements in the cells
adjacent to the tip. (b) Electric field obtained using only nonsingular LT/QN functions throughout the mesh.

element matrices are the magnetic field with the electric field and imposing the
_ _ essential boundary condition that the tangential electric field
Eij = // {(Vex Bi)- (Ve x B;)}dS (14) vanishes on a perfect conductor.

Ae Consider a homogeneous circular cavity of unit radius with

and a baffle extending to the center (Fig. 6) for which the 2-D
o modes and resonant frequencies can be found analytically.

Fij = // {B; - B;}dS (15) Fig. 6(a) shows the electric field for the lowest order TE mode,

A while Fig. 6(b) shows the magnetic field for the lowest order

whereA. is the area of the element. Since the basis functiod® mode. Both appear to exhibit a singularity at the baffle
B, are given in the triangular coordinate systémo), all tip. These results were obtained by representing the electric

integrations involve polynomial products and can be evaluatéield with ordinary LT/QN elements everywhere, except in
analytically. This eigenvalue problem is solved iterativeljthe cells adjacent to the tip of the baffle, where they were
taking advantage of the sparsity of the global FEM matricesplaced by the singular functions of (12). Fig. 7(a) shows an

[19]. The above equations describe the TM modes of a 2d€xpanded view of the TE field in the immediate vicinity of
cavity; the TE modes can be obtained from (13) by exchangitite edge obtained using the singular functions, while Fig. 7(b)
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Fig. 8. Normalized surface current on the baffle of the circular cavity for a 0.04000 010000 0.30000

coarse mesh with only two edges on the baffle. The result using an LT/QN
expansion is compared to that obtained with singular basis functions around
the tip of the baffle and to the exact solution. Fig. 10. Error in the second TM wavenumber versus average edge length
in the mesh for the same meshes used to produce Fig. 8. This mode is
nonsingular, but illustration results obtained using ordinary LT/QN elements

everywhere are compared with results from LT/QN elements augmented with
singular elements around the tip.

Average Edge Length

1.000 ~
/
/
/
P N TABLE |
e LowesT TE WAVENUMBER FOR THE L-SHAPED CAvITY, PRODUCED BY VARIOUS
g TRIANGULAR-CELL MESHESWITH AVERAGE EDGE LENGTH INDICATED.
/ THIS IS A SNGULAR MODE, AND RESULTS OBTAINED WITH SINGULAR
0.100 N L ELEMENTS AROUND THE CORNER ARE COMPARED WITH RESULTS OBTAINED
| /BN USING ONLY NONSINGULAR LT/QN ELEMENTS THROUGHOUT THE MESH
B \
& , ’I AN // N edge length [ nonsingular ] singular
® /\
Ao 1.360 1.160 1.192
AR 0.840 1.199 1.214
ju ! V! 0.556 1.205 1.214
0.010 PR I’ i 0.412 1.209 1.214
; 7Y ! 0.281 1.211 1.214
VA Y NomSinmal 0.203 1.212 1.215
A T Tomvinada 0.141 1.213 1.215
v — - Singular 0.101 1.214 1.215
1 0.071 1.214 1.215
0.002 0.050 1.214 1.215
0.04000 0.10000 030000 0.036 1214 1.215
Average Edge Length 0.025 1.214 1.215

Fig. 9. Error in the lowest order TM wavenumber versus average edge

length in the mesh for 18 unstructured triangular-cell meshes. This mode

has a singularity at the baffle tip, and results obtained using ordinar . . . . .

LT/QN elements everywhere are compared with results from LT/QN elemerﬁi)tamed using the singular basis functions show much steeper

augmented with singular elements around the tip. convergence curves than the nonsingular basis functions for
the singular modes; for the nonsingular modes the error curves
are similar whether singular or nonsingular basis functions
shows the identical view for the TE mode obtained using onre used. All computations were done in single precision, and
the nonsingular LT/QN elements. It is apparent from Fig. froduced at least four significant digits after eigensolution.
that the singular elements produce a smoother less distorfdw observed convergence behavior for TE modes is similar.
field plot in the vicinity of the singularity. Fig. 8 shows a As a second example, consider an L-shaped cavity with
comparison of the exact and numerical results for the Thkterior dimensions & 2, and the interior corner located at the
surface current on the baffle for a coarse mesh with ontgnter. Fig. 11(a) shows a vector plot of the lowest order TE
two edges along the baffle. The singular basis function closehode, while Fig. 11(b) shows the lowest order TM mode. Both
tracks the exact singularity. To illustrate convergence, Fig.&@®e singular at the interior corner. Table | shows numerical
shows the error in the eigenvalue associated with the lowessults for the lowest order TE eigenvalue as a function of
order TM mode versus average edge length in the mesh &werage edge length in the various finite-element meshes used
singular and nonsingular basis functions. Data were obtainedrepresent the region. The results obtained using singular
using 18 unstructured triangular-cell meshes; the finest mdshctions at the corner appear to converge much faster than the
produces about 22 000 unknowns. Fig. 10 shows similar dassults obtained using ordinary LT/QN elements everywhere.
for the next higher TM mode, which is nonsingular. ResultSimilar convergence rates were observed for the lowest order
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Fig. 11. (a) The electric field associated with the lowest order TE mode. (b) The magnetic field associated with the lowest order TM mode.
TABLE I nonsingular modes, the use of singular elements increases the

SeconD TE WAVENUMBER FOR THE L-SHAPED CAvITY, PRODUCED BY VARIOUS  ghserved error onIy slightly, and does not appear to affect the
TRIANGULAR-CELL MESHESWITH AVERAGE EDGE LENGTH INDICATED. THIS IS

A NONSINGULAR MODE, AND RESULTS OBTAINED WITH SINGULAR _rate of ?Onvergence' ThUS, t.he Sm_gu'a_‘r elements can be used
ELemENTS AROUND THE CORNER ARE ComPARED WiTH ResuLts Ostainep  iN locations where a field singularity is expected. If such a

USING ONLY NONSINGULAR LT/QN ELEMENTS THROUGHOUT THE MESH singularity is absent, the results will not be adversely affected.

edge length |  non-singular | singular

1.360 1.868 1.825
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